

The Agilent E8267D is a fully synthesized signal generator with high output power, low phase noise, and I/Q modulation capability.

Specifications apply over a 0 to $55^{\circ} \mathrm{C}$ range, unless otherwise stated, and apply after a 45 minute warm-up time. With vector modulation on, specifications apply after executing I/Q calibration with instrument maintained within $\pm 5^{\circ} \mathrm{C}$ of calibration temperature unless otherwise stated. Supplemental characteristics, denoted as typical, nominal, or measured, provide additional (non-warranted) information at $25^{\circ} \mathrm{C}$, which may be useful in the application of the product.

Unless otherwise noted, this data sheet applies to units with serial numbers ending with 50420000 or greater.

Definitions

Specifications (spec): Represents warranted performance for instruments with a current calibration.

Typical (typ): Represents characteristic performance which is non-warranted. Describes performance that will be met by a minimum of 80% of all products.

Nominal (nom): Represents characteristic performance which is non-warranted. Represents the value of a parameter that is most likely to occur; the expected mean or mode of all instruments at room temperature (approximately $25^{\circ} \mathrm{C}$).

Measured: Represents characteristic performance which is non-warranted.
Represents the value of a parameter measured on an instrument during design stage.
Specifications. 3
Frequency 3
Step (digital) sweep 3
Ramp (analog) sweep 4
Output 5
Spectral purity 9
Frequency modulation 14
Phase modulation 15
Amplitude modulation. 16
External modulation inputs 16
Internal modulation source 16
Wideband AM 16
Pulse modulation 17
Narrow pulse modulation 17
Pulse modulation 18
Internal pulse generator 19
Simultaneous modulation 19
Vector modulation 20
Internal baseband generator, arbitrary waveform mode 22
Internal baseband generator, real-time mode 25
Remote programming 27
General specifications 28
Input/Output Descriptions 29
Front panel connectors 29
Rear panel connectors 30
Auxiliary I/O connector 31
Options, Accessories, and Related Products 32
Web Resources 33
Related Agilent Literature 34

Specifications

[^0]
Ramp (analog) sweep $\left(\right.$ Option 007) ${ }^{1}$

[^1]
Output
 (Without Option UNY)

(With Option UNY)

Power ${ }^{1,2}$ (dBm)			
Frequency range		Spec (typ)	
Option 520			
250 kHz to 3.2 GHz		-130 to $+13(+16)$	
250 kHz to 3.2 GHz with Option UNW		-130 to +9 (+13)	
250 kHz to 3.2 GHz with Option 1EH		-130 to $+10(+13)^{3}$	
250 kHz to 3.2 GHz with Options UNW and 1EH		-130 to $+7(+12)^{3}$	
> 3.2 to 10 GHz		-130 to $+18(+23)^{4}$	
>10 to 20 GHz		-130 to $+18(+22)^{4}$	
Options 532 and 544			
250 kHz to 3.2 GHz		-130 to $+12(+15)$	
250 kHz to 3.2 GHz with Option UNW		-130 to $+8(+12)$	
250 kHz to 3.2 GHz with Option 1EH		-130 to $+9(+12)^{3}$	
250 kHz to 3.2 GHz with Options UNW and 1EH		-130 to $+6(+11)^{3}$	
>3.2 to 10 GHz		-130 to $+14(+21)^{4}$	
>10 to 20 GHz		-130 to $+14(+18)^{4}$	
> 20 to 32 GHz		-130 to $+14(+18)^{5}$	
> 32 to 40 GHz		-130 to $+12(+18)^{5}$	
> 40 to 44 GHz		-130 to $+10(+13)^{5}$	
Minimum settable output power		$-130 \mathrm{dBm}$	
Maximum output power (dBm) ${ }^{6}$			
		Spec (typ)	
Frequency range ${ }^{7}$	CW	Standard 1/08 ${ }^{\text {8 }}$	Wideband I/ \mathbf{Q}^{9}
Option 520			
10 to 250 MHz (filters on)	+15 (+17)	+15 (+16)	+11 (+15)
>0.25 to 2 GHz (filters on)	+16 (+17)	+16 (+17)	+14 (+16)
250 kHz to 10 MHz	+14 (+17)	+14 (+17)	(+14)
>10 to < 60 MHz	+16 (+19)	+16 (+19)	+14 (+17)
60 to 400 MHz	+20 (+21)	+20 (+21)	+18 (+21)
>0.4 to 3.2 GHz	+21 (+23)	+20 (+22)	+18 (+20)
>3.2 to 10 GHz	+18 (+23)	+18 (+21)	+12 (+16)
> 10 to 20 GHz	+18 (+22)	+18 (+21)	+12 (+16)
Option 532 and 544			
10 to 250 MHz (filters on)	+14 (+16)	+14 (+16)	+9 (+12)
>0.25 to 2 GHz (filters on)	+15 (+16)	+15 (+16)	+9 (+13)
250 kHz to 10 MHz	+13 (+16)	+13 (+17)	(+13)
>10 to < 60 MHz	+15 (+18)	+15 (+17)	+13 (+16)
60 to 400 MHz	+19 (+21)	+18 (+20)	+17 (+20)
> 0.4 to 3.2 GHz	+20 (+22)	+17 (+20)	+17 (+19)
>3.2 to 10 GHz	+14 (+21)	+14 (+21)	+9 (+13)
>10 to 20 GHz	+14 (+18)	+14 (+18)	+8 (+14)
>20 to 32 GHz	+14 (+18)	+14 (+18)	(+14)
> 32 to 40 GHz	+12 (+18)	+12 (+16)	(+13)
>40 to 44 GHz	+10 (+13)	+10 (+15)	(+13)

[^2]Maximum available power in CW mode (measured)
(without Option UNY)

(with Option UNY)

Step attenuator ${ }^{3}$	0 to 115 dB in 5 dB steps
Attenuator hold range	From -15 dBm to maximum specified Minimum
	00 dB position; can be offset using step attenuator
Amplitude switching speed	$<6 \mathrm{~ms} \mathrm{(typ)}{ }^{1}$
ALC on:	$<10 \mathrm{~ms}$ (typ) (not including power search) $)^{2}$
ALC off:	

1. To within 0.1 dB of final amplitude within one attenuator range.
2. To within 0.5 dB of final amplitude within one attenuator range. Add up to 50 ms when using power search.
3. The step attenuator provides coarse power attenuation to achieve low power levels. Fine power level adjustment is provided by the ALC (Automatic Level Control) within the attenuator hold range.

Level accuracy ${ }^{\mathbf{1}}$ (dB)				
Frequency	$>+\mathbf{1 0 ~ d B m}$	$\mathbf{+ 1 0 ~ t o ~} \mathbf{- 1 0 ~ d B m}$	$<-\mathbf{1 0}$ to $\mathbf{- 7 0} \mathbf{~ d B m}$	$<-\mathbf{7 0}$ to $\mathbf{- 9 0} \mathbf{~ d B m}$
250 kHz to 2 GHz	± 0.6	± 0.6	± 0.7	± 0.8
>2 to 20 GHz	± 0.8	± 0.8	± 0.9	± 1.0
>20 to 32 GHz	± 1.0	± 0.9	± 1.0	± 1.7
>32 to 44 GHz	± 1.0	± 0.9	± 1.5	± 2.0

CW level accuracy with I/0 modulation (With PRBS modulated data) (relative to CW) With ALC on:

QAM or QPSK formats ${ }^{2}$	$\pm 0.2 \mathrm{~dB}$
Constant-amplitude formats (FSK, GMSK, etc)	$\pm 0.2 \mathrm{~dB}$
With ALC off: ${ }^{3}$	$\pm 0.2 \mathrm{~dB}$ (typ)

Level accuracy (measured)

Resolution	0.01 dB
Temperature stability	$0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ (typ) ${ }^{4}$
User flatness correction	2 to 1601 points/table
Number of points	Up to 10,000 , memory limited Number of tables
Arbitrary, within attenuator range Remote power meter ${ }^{5}$, remote bus, manual (user edit/view)	
Entry modes	50Ω (nom)
Output impedance	
SWR (internally leveled)	$<1.4: 1$ (typ)
Option 520	$<1.6: 1$ (typ)
250 kHz to 2 GHz	$<1.4: 1$ (typ)
$>2 \mathrm{GHz}$ to 20 GHz	$<1.6: 1$ (typ)
Option 532 and 544	$<1.8: 1$ (typ)
250 kHz to 1.2 GHz	Internal leveling, external detector leveling, $>1.2 \mathrm{GHz}$ to 20 GHz $>20 \mathrm{GHz}$
millimeter source module, ALC off	

[^3]

Spectral purity

 (without Option UNY)| Harmonics ${ }^{1}$ (at +10 dBm or maximum specified output power, whichever is lower) |
| :--- |
| $<10 \mathrm{MHz}$ |
| 10 MHz to 2 GHz |
| 10 MHz to 2 GHz (with Option 1EH filters on) $-50 \mathrm{dBc}^{2}-5 \mathrm{dBc}^{4}$ |
| $>2 \mathrm{GHz}$ to 20 GHz |
| $>20 \mathrm{GHz}$ to 44 GHz |

Harmonics (measured)

(Option UNY)

Harmonics ${ }^{5}$ (dBc at +10 dBm or maximum specified output power, whichever is lower)	
Frequency	
$<1 \mathrm{MHz}$	-25 dBc (typ)
1 to $<10 \mathrm{MHz}$	-25 dBc
10 to $<60 \mathrm{MHz}$	-28 dBc
10 to $<60 \mathrm{MHz}$ with Option 1EH Filters On	-45 dBc
0.06 to 2 GHz	-30 dBc
0.06 to 2 GHz with Option 1EH Filters On	-55 dBc
>2 to 20 GHz	-55 dBc
>20 to 44 GHz	-45 dBc (typ)

[^4]| Sub-harmonics ${ }^{1}$ (At +10 dBm or maximum specified output power, whichever is lower) | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 250 kHz to 10 GHz | | None | | |
| $>10 \mathrm{GHz}$ to 20 GHz | | $<-60 \mathrm{dBc}$ | | |
| $\geq 20 \mathrm{GHz}$ to 44 GHz | | $<-45 \mathrm{dBc}$ | | |
| Non-harmonics ${ }^{2,3}$ (dBc at +10 dBm or maximum specified output power, whichever is lower) | | | | |
| | Offsets > 3 kHz (Standard) | Offsets > 300 Hz (Opt UNX or UNY) | Offsets > 3 kHz (Option UNY) | Line-related ($\leq 300 \mathrm{~Hz}$) |
| Frequency | Spec (typ) | Spec (typ) | Spec | (Typical) |
| 250 kHz to 250 MHz | $\mathrm{Hz}-58(-62)^{6}$ | $-58(-62)^{6}$ | -58 | (-55) |
| > 250 MHz to 1 GHz | z -80 (-88) | -80 (-88) | -80 | (-55) |
| >1 to 2 GHz | -74 (-82) | -74 (-82) | -80 | (-55) |
| >2 to 3.2 GHz | -68 (-76) | -68 (-76) | -76 | (-55) |
| > 3.2 to 10 GHz | -62 (-70) | -62 (-70) | -70 | (-50) |
| > 10 to 20 GHz | -56 (-64) | -56 (-64) | -64 | (-45) |
| > 20 to 28.5 GHz | -52 (-60) | -52 (-60) | -58 | (-39) |
| ≥ 28.5 to 44 GHz | -48 (-56) | -48 (-56) | -52 | (-37) |
| Residual FM (RMS, 50 Hz to 15 kHz bandwidth) | | | | |
| CW mode | | $<\mathrm{N} \times 8 \mathrm{~Hz}$ (typ) | | |
| CW mode with Option UNX or UNY | | $<\mathrm{N} \times 4 \mathrm{~Hz}$ (typ) | | |
| Ramp sweep mode | | < N x 1 kHz (typ) | | |
| Broadband noise | (CW mode at +10 dBm or maximum specified output power, whichever is lower, for offsets > 10 MHz) | | | |
| > 2.4 to 20 GHz | | $<-148 \mathrm{dBc} / \mathrm{Hz}$ (typ) | | |
| $\geq 20 \mathrm{GHz}$ | | $<-141 \mathrm{dBc} / \mathrm{Hz}$ (ty | | |
| Measured RMS jitter: ${ }^{4}$ | | | | |
| Standard | | | | |
| Carrier SO | SONET/SDH | RMS jitter | Unit intervals | Time |
| frequency da | data rates | bandwidth | | (fs) |
| 155 MHz | 155 MB/s | 100 Hz to 1.5 MHz | 25 | 158 |
| $622 \mathrm{MHz} \quad 62$ | $622 \mathrm{MB} / \mathrm{s}$ | 1 kHz to 5 MHz | 21 | 34 |
| $2.488 \mathrm{GHz} \quad 24$ | 2488 MB/s | 5 kHz to 20 MHz | 57 | 23 |
| 9.953 GHz 99 | $9953 \mathrm{MB} / \mathrm{s}$ | 10 kHz to 80 MHz | 152 | 15 |
| $39.812 \mathrm{GHz} \quad 39$ | $39812 \mathrm{MB} / \mathrm{s}$ | 40 kHz to 320 MHz | 627 | 16 |
| Option UNX | | | | |
| Carrier SO | SONET/SDH | RMS jitterbandwidth | Unit intervals | Time |
| frequency da | data rates | | | (fs) |
| 155 MHz | $155 \mathrm{MB} / \mathrm{s}$ | 100 Hz to 1.5 MHz | 23 | 151 |
| $622 \mathrm{MHz} \quad 62$ | $622 \mathrm{MB} / \mathrm{s}$ | 1 kHz to 5 MHz | 19 | 30 |
| $2.488 \mathrm{GHz} \quad 24$ | 2488 MB/s | 5 kHz to 20 MHz | 56 | 22 |
| $9.953 \mathrm{GHz} \quad 99$ | $9953 \mathrm{MB} / \mathrm{s}$ | 10 kHz to 80 MHz | 152 | 15 |
| 39.812 GHz 39 | 39812 MB/s | 40 kHz to 320 MHz | 626 | 16 |
| Option UNY | | | | |
| Carrier S | SONET/SDH | RMS jitter bandwidth | Unit intervals$(\mu \mathrm{UI})$ | Time |
| frequency da | data rates | | | (fs) |
| $155 \mathrm{MHz} \quad 15$ | $155 \mathrm{MB} / \mathrm{s}$ | 100 Hz to 1.5 MHz | 21 | 130 |
| $622 \mathrm{MHz} \quad 62$ | $622 \mathrm{MB} / \mathrm{s}$ | 1 kHz to 5 MHz | 22 | 35 |
| $2.488 \mathrm{GHz} \quad 24$ | 2488 MB/s | 5 kHz to 20 MHz | 53 | 21 |
| 9.953 GHz 9953 | $9953 \mathrm{MB} / \mathrm{s}$ | 10 kHz to 80 MHz | 96 | 10 |
| $39.812 \mathrm{GHz} \quad 39$ | $39812 \mathrm{MB} / \mathrm{s}$ | 40 kHz to 320 MHz | 518 | 13 |
| SSB phase noise (dBc/Hz) (CW) ${ }^{5}$ | | | | |
| Frequency | | 20 kHz offset from carrier | | |
| 250 kHz to 250 MHz | | -130 | -134 | |
| > 250 to 500 MHz | | -134 | -138 | |
| $>500 \mathrm{MHz}$ to 1 GHz | | -130 | -134 | |
| >1 to 2 GHz | | -124 | -128 | |
| >2 to 3.2 GHz | | -120 | -124 | |
| >3.2 to 10 GHz | | -110 | -113 | |
| >10 to 20 GHz | | -104 | -108 | |
| > 20 to 28.5 GHz | | -100 | -104 | |
| $>28.5 \mathrm{GHz}$ | | -96 | -100 | |

1. Sub-harmonics are defined as Carrier Freq/N. Specifications are typical for sub-harmonics beyond specified frequency range. Specifications are typical when I / Q modulation is on
2. Performance is typical for spurs at frequencies above the maximum operating frequency of the instrument. Specifications apply for CW mode, without modulation. In ramp sweep mode (Option 007), performance is typical for offsets $>1 \mathrm{MHz}$.
3. Excluding external mechanical vibration.
4. Calculated from phase noise performance in CW mode only at +10 dBm . For other frequencies, data rates, or bandwidths, please contact your sales representative.
5. Phase noise specifications are warranted from 15 to $35^{\circ} \mathrm{C}$ excluding external mechanical vibration. Measured at +10 dBm or maximum specified output power, whichever is less.
6. For offsets > 10 kHz .

Option UNX: Absolute SSB phase noise (dBc/Hz) (CW) ${ }^{1,2}$						
Offset from carrier						
Frequency	1 Hz	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz
	Spec (typ)					
250 kHz to 250 MHz	-58 (-66)	-87 (-94)	-104 (-120)	-121 (-128)	-128 (-132)	-130 (-133)
> 250 to 500 MHz	-61 (-72)	-88 (-98)	-108 (-118)	-125 (-132)	-132 (-136)	-136 (-141)
$>500 \mathrm{MHz}$ to 1 GHz	-57 (-65)	-84 (-93)	-101 (-111)	-121 (-130)	-130 (-134)	-130 (-135)
> 1 to 2 GHz	-51 (-58)	-79 (-86)	-96 (-106)	-115 (-124)	-124 (-129)	-124 (-129)
>2 to 3.2 GHz	-46 (-54)	-74 (-82)	-92 (-102)	-111 (-120)	-120 (-124)	-120 (-124)
>3.2 to 10 GHz	-37 (-44)	-65 (-72)	-81 (-92)	-101 (-109)	-110 (-114)	-110 (-115)
>10 to 20 GHz	-31 (-38)	-59 (-66)	-75 (-87)	-95 (-106)	-104 (-107)	-104 (-109)
>20 to 28.5 GHz	-25 (-34)	-56 (-62)	-72 (-83)	-92 (-102)	-100 (-103)	-100 (-105)
>28.5 to 44 GHz	-20 (-30)	-51 (-58)	-68 (-77)	-88 (-97)	-96 (-99)	-96 (-101)

Option UNY: Absolute SSB phase noise (dBc/Hz) (CW) ${ }^{1,2}$
Offset from carrier, optimized for less than 150 kHz (mode 1)

Frequency	$\mathbf{1 ~ H z}$ Spec (typ)	$\mathbf{1 0 ~ H z}$ Spec (typ)	$\mathbf{1 0 0 ~ H z}$ Spec (typ)	$\mathbf{1} \mathbf{~ k H z}$ Spec (typ)	$\mathbf{1 0} \mathbf{~ k H z}$ Spec (typ)	$\mathbf{1 0 0} \mathbf{~ k H z}$ Spec (typ)
250 kHz to 250 MHz	$-64(-70)$	$-92(-98)$	$-115(-125)$	$-123(-135)$	$-138(-144)$	$-141(-144)$
>250 to 500 MHz	$-67(-77)$	$-93(-101)$	$-111(-116)$	$-125(-132)$	$-138(-144)$	$-142(-147)$
$>500 \mathrm{MHz}$ to 1 GHz	$-62(-69)$	$-91(-99)$	$-105(-111)$	$-121(-128)$	$-138(-143)$	$-138(-144)$
>1 to 2 GHz	$-57(-63)$	$-86(-90)$	$-100(-106)$	$-115(-121)$	$-133(-138)$	$-133(-139)$
>2 to 3.2 GHz	$-52(-58)$	$-81(-84)$	$-96(-102)$	$-111(-117)$	$-128(-134)$	$-128(-134)$
>3.2 to 10 GHz	$-43(-49)$	$-72(-76)$	$-85(-91)$	$-101(-107)$	$-120(-126)$	$-120(-125)$
>10 to 20 GHz	$-37(-43)$	$-66(-70)$	$-79(-85)$	$-95(-101)$	$-114(-121)$	$-114(-119)$
>20 to 28.5 GHz	$-31(-37)$	$-60(-66)$	$-73(-79)$	$-89(-95)$	$-108(-113)$	$-108(-113)$
>28.5 to 44 GHz	$-26(-32)$	$-54(-60)$	$-68(-73)$	$-84(-90)$	$-102(-107)$	$-102(-107)$

Option UNX: Residual SSB phase noise (dBc/Hz) (CW) ${ }^{1,2}$

Frequency	$\mathbf{1 ~ H z}$ Spec (typ)	$\mathbf{1 0 ~ H z}$ Spec (typ)	100 Hz Spec (typ)	Offset from carrier $\mathbf{1 ~ k H z}$ Spec (typ)	$\mathbf{1 0 ~ k H z}$ Spec (typ)	$\mathbf{1 0 0} \mathbf{~ k H z}$ Spec (typ)
250 kHz to 250 MHz	(-94)	$-100(-107)$	$-110(-118)$	$-120(-126)$	$-128(-132)$	$-130(-133)$
>250 to 500 MHz	(-101)	$-105(-112)$	$-115(-122)$	$-124(-131)$	$-132(-136)$	$-136(-141)$
$>500 \mathrm{MHz}$ to 1 GHz	(-94)	$-100(-107)$	$-110(-118)$	$-120(-126)$	$-130(-134)$	$-130(-134)$
>1 to 2 GHz	(-89)	$-96(-101)$	$-104(-112)$	$-114(-120)$	$-124(-129)$	$-124(-129)$
>2 to 3.2 GHz	(-85)	$-92(-97)$	$-100(-108)$	$-110(-116)$	$-120(-124)$	$-120(-124)$
>3.2 to 10 GHz	(-74)	(-87)	(-98)	(-106)	(-114)	(-115)

Option UNY: Residual SSB phase noise (dBc/Hz) (CW) ${ }^{1,2}$

	Offset from carrier, optimized for less than $150 \mathrm{kHz}(\mathrm{mode} 1)$					
Frequency	$\mathbf{1} \mathbf{~ H z}$	$\mathbf{1 0 ~ H z}$	$\mathbf{1 0 0} \mathbf{~ H z}$	$\mathbf{1 ~ k H z}$	$\mathbf{1 0} \mathbf{~ k H z}$	$\mathbf{1 0 0} \mathbf{k H z}$
	Spec (typ)					
250 kHz to 250 MHz	(-94)	$-100(-107)$	$-110(-118)$	$-123(-135)$	$-138(-144)$	$-141(-144)$
>250 to 500 MHz	(-101)	$-105(-112)$	$-115(-122)$	$-124(-130)$	$-138(-144)$	$-140(-147)$
$>500 \mathrm{MHz}$ to 1 GHz	(-94)	$-100(-108)$	$-110(-118)$	$-120(-126)$	$-135(-142)$	$-135(-145)$
>1 to 2 GHz	(-89)	$-96(-101)$	$-104(-112)$	$-115(-121)$	$-133(-138)$	$-133(-139)$
>2 to 3.2 GHz	(-85)	$-92(-97)$	$-100(-108)$	$-111(-117)$	$-128(-134)$	$-128(-134)$
>3.2 to 10 GHz	(-74)	(-87)	(-98)	(-104)	(-126)	(-125)

[^5]

1. External I / Q input level $\sqrt{\left(\mathrm{I}^{2}+\mathrm{Q}^{2}\right)}=0.5 \mathrm{Vrms}, \mathrm{I} / \mathrm{Q}$ modulator attenuator set to auto.
2. Option UNY phase noise optimized for offsets less than 150 kHz (mode 1).

3. Option UNY phase noise optimized for offsets less than 150 kHz (mode 1).

Frequency modulation (Option UNT)

Maximum deviation ${ }^{1}$	Frequency normal mode 250 kHz to 250 MHz >250 to 500 MHz $>500 \mathrm{MHz}$ to 1 GHz $>1 \mathrm{GHz}$ to 2 GHz $>2 \mathrm{GHz}$ to 3.2 GHz $>3.2 \mathrm{GHz}$ to 10 GHz $>10 \mathrm{GHz}$ to 20 GHz $>20 \mathrm{GHz}$ to 28.5 GHz $>28.5 \mathrm{GHz}$ to 44 GHz	Maximu 2 MHz 1 MHz 2 MHz 4 MHz 8 MHz 16 MHz 32 MHz 48 MHz 80 MHz	iation
Resolution		0.1% of deviation or 1 Hz , whichever is greater	
Deviation accuracy		$< \pm 3.5 \%$ of FM deviation +20 Hz (1 kHz rate, deviations < N x 800 kHz)	
Modulation frequency response ${ }^{2}$ (at 100 kHz deviation)			
Path [coupling]	1 dB ban	width	
Standard or Option UNX			
FM path 1 [DC]	DC to 100		DC to
FM path 2 [DC]	DC to 100		
FM path 1 [AC]	20 Hz to	00 kHz	5 Hz
FM path 2 [AC]	20 Hz to	00 kHz	5 Hz
Option UNY			
FM path 1 [DC]	DC to 100	kHz	DC to
FM path 2 [DC]	DC to 100	kHz	DC t
FM path 1 [AC]	20 Hz to	00 kHz	5 Hz
FM path 2 [AC]	20 Hz to	00 kHz	5 Hz
DC FM ${ }^{3}$ carrier offset		$\pm 0.1 \%$ of set deviation + ($\mathrm{N} \times 8 \mathrm{~Hz}$)	
Distortion		$<1 \%$ (1 kHz rate, deviations < N x 800 kHz)	
Sensitivity	$\pm 1 \mathrm{~V}_{\text {peak }}$ for indicated deviation		
Paths		FM1 and FM2 are summed internally for composite modulation; either path may be switched to any one of the modulation sources: Ext1, Ext2, internal1, internal2; the FM2 path is limited to a maximum rate of 1 MHz ; the FM2 path must be set to a deviation less than FM1; to avoid distortion and clipping, signals applied with any combination of FM1, FM2, or FM1+FM2 should not exceed $1 \mathrm{~V}_{\text {peak }}$	

[^6]2. Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 10 MHz (FM1 path), and 50 kHz to 1 MHz (FM2 path).
3. At the calibrated deviation and carrier frequency, within $5^{\circ} \mathrm{C}$ of ambient temperature at time of user calibration.

Phase modulation (Option UNT)

[^7]
Amplitude modulation ${ }^{1}$ (Option UNT) (typical)

External modulation inputs (Option UNT)
 Internal modulation source (Option UNT)

Wideband AM

Depth	Linear mode	Exponential (log) mode (downward modulation only)
Maximum		
ALC on	> 90\%	$>20 \mathrm{~dB}$
ALC off with power search ${ }^{2}$ or ALC on with deep AM^{3}	> 95\%	$>40 \mathrm{~dB}$
Settable	0 to 100\%	0 to 40 dB
Sensitivity	0 to 100\%/V	0 to $40 \mathrm{~dB} / \mathrm{V}$
Resolution	0.1\%	0.01 dB
Accuracy (1 kHz rate)	$< \pm$ (6% of setting + 1\%)	$< \pm(2 \%$ of setting $+0.2 \mathrm{~dB})$
External input (selectable polarity)		
Sensitivity for indicated depth	$1 \mathrm{~V}_{\text {peak }}$	-1 V or +1 V
Maximum allowable	$\pm 1 \mathrm{~V}$	$\pm 3.5 \mathrm{~V}$
Rates (3 dB bandwidth, 30\% depth)		
DC coupled	0 to 100 kHz	
AC coupled	10 Hz to 100 kHz (useable	1 MHz)
Distortion (1 kHz rate, linear mode, Total Harmonic Distortion (THD))		
30\% AM 60\% AM	$\begin{aligned} & <1.5 \% \\ & <2 \% \end{aligned}$	
Paths	AM1 and AM2 are summed either path may be switched sources: ext1, ext2, internal1	nally for composite modulation; any one of the modulation ernal2
Modulation types	AM, FM, and ФM	
Input impedance	50 or 600Ω (nom), switched	
High/low indicator (100 Hz to 10 MHz BW, ac coupled inputs only)		Activated when input level error exceeds 3\% (nom)
Dual function generators provide two independent signals (internal1 and internal2) for use with AM, FM, ФM, or LF Out.		
Waveforms	Sine, square, positive ramp, negative ramp, triangle, Gaussian noise, uniform noise, swept sine, dual sine ${ }^{4}$	
Rate range		
Sine	0.5 Hz to 1 MHz	
Square, ramp, triangle	0.5 Hz to 100 kHz	
Resolution	0.5 Hz	
Accuracy	Same as timebase	
LF out		
Output	Internal1 or internal2; also provides monitoring of internal1 or internal2 when used for AM, FM, or ФМ	
Amplitude	0 to $3 \mathrm{~V}_{\text {peak, }}$, into 50Ω (nom)	
Output impedance	50Ω (nom)	
Swept sine mode: (frequency, phase continuous)		
Operating modes Triggered or co		Triggered or continuous sweeps
Frequency range	1 Hz to 1 MHz	
Sweep rate	0.5 to 100,000 sweeps/s, equivalent to sweep times $10 \mu \mathrm{~s}$ to 2 s	
Resolution	0.5 Hz (0.5 sweep/s)	
Rate (typical 1 dB bandwidth)		
ALC on	1 kHz to 80 MHz	
ALC off	DC to 80 MHz	
External I input		
Sensitivity	$0.5 \mathrm{~V}=100 \%$	
Input impedance	50Ω (nom)	

1. AM specifications are typical. For carrier frequencies below $2 \mathrm{MHz}, \mathrm{AM}$ is useable but not specified. Unless otherwise stated, specifications apply with ALC on, deep AM off, and envelope peaks within ALC operating range (-15 dBm to maximum specified power, excluding step attenuator setting).
2. ALC Off is used for narrow pulse modulation and/or high AM depths, with envelope peaks below ALC operating range. Carrier power level will be accurate after a power search is executed.
3. ALC On with deep AM provides high AM depths together with closed-loop internal leveling. This mode must be used with a repetitive AM waveform (frequency $>10 \mathrm{~Hz}$) with peaks $>-5 \mathrm{dBm}$ (nominal, excluding step-attenuator setting).
4. Internal2 is not available when using swept sine or dual sine modes.

Pulse modulation ${ }^{1,2}$
(Option UNU without UNY)

Narrow pulse modulation ${ }^{1,2}$ (Option UNW without UNY)

	500 MHz to 3.2 GHz	Above 3.2 GHz
On/off ratio	80 dB (typ)	80 dB
Rise/fall times (Tr, Tf)	100 ns (typ)	6 ns (typ)
Minimum pulse width		
Internally leveled	$2 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
Level hold (ALC off with power search)	$0.5 \mu \mathrm{~s}$	$0.15 \mu \mathrm{~s}$
Repetition frequency		
Internally leveled	10 Hz to 250 kHz	10 Hz to 500 kHz
Level hold (ALC off with power search)	DC to 1 MHz	DC to 3 MHz
Level accuracy (relative to CW)		
Internally leveled	$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$
Level hold (ALC off with power search)	$\pm 0.5 \mathrm{~dB}$ (typ)	$\pm 0.5 \mathrm{~dB}$ (typ)
Width compression		
(RF width relative to video out)	$\pm 50 \mathrm{~ns}$ (typ)	$\pm 5 \mathrm{~ns}$ (typ)
Video feed-through ${ }^{3}$	< 200 mv pk-pk (typ)	< 2 mv pk-pk (typ)
Video delay (Ext input to video)	50 ns (nom)	50 ns (nom)
RF delay (video to RF output)	270 ns (nom)	35 ns (nom)
Pulse overshoot	< 10\% (typ)	< 10\% (typ)
Input level	$+1 \mathrm{~V}_{\text {peak }}=\mathrm{RF}$ on	$+1 \mathrm{~V}_{\text {peak }}=\mathrm{RF}$ on
Input impedance	50Ω (nom)	50Ω (nom)

	10 MHz to 3.2 GHz	Above 3.2 GHz
On/off ratio	80 dB	80 dB
Rise/fall times (Tr, Tf)	10 ns (8 ns typ)	10 ns (6 ns typ)
Minimum pulse width		
Internally leveled:	$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
Level hold (ALC off with power search):	20 ns	20 ns
Repetition frequency		
Internally leveled:	10 Hz to 500 kHz	10 Hz to 500 kHz
Level hold (ALC off with power search):	DC to 5 MHz	DC to 10 MHz
Level accuracy (relative to CW)		
Internally leveled	$\pm 0.5 \mathrm{~dB}$	$\pm 0.5 \mathrm{~dB}$ (0.15 dB typ)
Level hold (ALC off with power search):	$\pm 1.3 \mathrm{~dB}$ (typ)	$\pm 0.5 \mathrm{~dB}$ (typ)
Width compression (RF width relative to video out)	$\pm 5 \mathrm{~ns}$ (typ)	$\pm 5 \mathrm{~ns}$ (typ)
Video feed-through ${ }^{4}$	< 125 mV pk-pk (typ)	<2 mV pk-pk (typ)
Video delay (Ext input to video)	50 ns (nom)	50 ns (nom)
RF delay (video to RF output)	45 ns (nom)	35 ns (nom)
Pulse overshoot	< 15\% (typ)	< 10\% (typ)
Input level	+1 $\mathrm{V}_{\text {peak }}=\mathrm{RF}$ On	+1 $\mathrm{V}_{\text {peak }}=\mathrm{RF}$ On
Input impedance	50Ω (nom)	50Ω (nom)

[^8]
Pulse modulation ${ }^{1}$ (Option UNY)

	Option UNU Standard pulse modulation	Option UNW Narrow pulse modulation
On/off ratio	80 dB (typical)	80 dB
Rise/fall times (Tr, Tf)		
50 to 400 MHz	10 ns (typical)	15 ns (10 ns typical)
Above 400 MHz	6 ns (typical)	10 ns (6 ns typical)
Minimum pulse width		
ALC on:	$1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$
ALC off:		
50 to 400 MHz	150 ns	30 ns
Above 400 MHz	150 ns	20 ns
Repetition frequency		
ALC on: ALC off:	10 Hz to 500 kHz dc to 3 MHz	10 Hz to 500 kHz dc to 10 MHz
Level accuracy (relative to CW)		
ALC on:	$\pm 0.5 \mathrm{~dB}$ (0.15 dB typical)	$\pm 0.5 \mathrm{~dB}$ (0.15 dB typical)
ALC off with power search: ${ }^{2}$ (
50 MHz to 3.2 GHz	$\pm 0.7 \mathrm{~dB}$ (typical)	$\pm 0.7 \mathrm{~dB}$ (typical)
Above 3.2 GHz	$\pm 0.5 \mathrm{~dB}$ (typical)	$\pm 0.5 \mathrm{~dB}$ (typical)
Width compression (RF width relative to video out)	$\pm 5 \mathrm{~ns}$ (typical)	$\pm 5 \mathrm{~ns}$ (typical)
Video feed-through ${ }^{3}$		
50 to 250 MHz	< 3\% (typical)	< 3\% (typical)
> 250 to 400 MHz	< 11\% (typical)	< 11\% (typical)
> 0.4 to 3.2 GHz	$<5 \%$ (typical)	< 5% (typical)
Above 3.2 GHz	< 2 mVpk-pk (typ)	< 2 mVpk -pk (typ)
Video delay (ext input to video)	50 ns (nom)	50 ns (nom)
RF delay (video to RF output)		
50 to 250 MHz	35 ns (nominal)	35 ns (nominal)
>0.25 to 3.2 GHz	25 ns (nominal)	25 ns (nominal)
Above 3.2 GHz	30 ns (nominal)	30 ns (nominal)
Pulse overshoot	< 10\% (typ)	< 10\% (typ)
Input level	+1 V = RF On	+1 V = RF On
Input impedance	50Ω (nom)	50Ω (nom)

Measured pulse modulation envelope Freq $=\mathbf{9}$ GHz, Ampl $=10 \mathrm{dBm}$, ALC Off, $10 \mathrm{~ns} /$ div

1. With ALC off, specs apply after the execution of power search. Specifications apply with Atten Hold Off (default mode for instruments with attenuator), or ALC level between -5 and +10 dBm or maximum specific power, whichever is lower. Below 50 MHz , pulse modulation is useable; however performance is not warranted.
2. Power search is a calibration routine that improves level accuracy with ALC off. The instrument microprocessor momentarily closes the ALC loop to find the modulator drive setting necessary to make the quiescent RF level equal to an entered value, then opens the ALC loop while maintaining that modulator drive setting. When executing power search, RF power will be present for typically 10 to 50 ms ; the step attenuator (Option 1E1) can be set to automatically switch to maximum attenuation to protect sensitive devices. Power search can be configured to operate either automatically or manually at the carrier frequency, or over a user-definable frequency range. Power search may not operate above the maximum specified output power.
3. With step attenuator in 0 dB position. Above 3.2 GHz , video feed-through decreases with step attenuator setting. Below 3.2 GHz , video feed-through is expressed as a percentage of RF output level.

Internal pulse generator
(Option UNU or UNW)

Simultaneous modulation

All modulation types (FM, AM, ФМ, pulse. and I/Q) may be simultaneously enabled except: FM with ФM, linear AM with exponential AM, and wideband AM with I/Q. AM, FM, and ФМ can sum simultaneous inputs from any two sources (Ext1, ext2, internal1, or internal2) Any given source (Ext1, ext2, internal1, or internal2) may be routed to only one activated modulation type

External I/0 inputs
Input impedance switched Input range ${ }^{2}$
Flatness
50 or 600Ω (nom)
Minimum $0.1 \mathrm{~V}_{\text {rms, }}$ maximum $1 \mathrm{~V}_{\text {peak }}$
$\pm 1 \mathrm{~dB}$ within $\pm 40 \mathrm{MHz}$ of carrier (with ALC off) (typ)

I/0 frequency response ${ }^{3}$ (measured)

RF path filters	Carrier frequency	Nominal filter cutoff
	$\leq 250 \mathrm{MHz}$	300 MHz low-pass filter
	>250 to 396 MHz	220 to 420 MHz bandpass filter
	>396 to 628 MHz	350 to 650 MHz bandpass filter
	>628 to 1000 MHz	1040 MHz low-pass filter
	>1.0 to 1.5 GHz	1.6 GHz low-pass filter

1. With Option 007, vector modulation is not useable in ramp sweep mode. With Option 1EH, specifications apply with filters off.
2. Different RMS levels are accommodated by adjusting the internal I/Q modulator attenuator, which may be either manually or automatically set. The minimum input level required to maintain RF level accuracy is $\sqrt{\left(I^{2}+0^{2}\right)}=0.1 \mathrm{Vrms}$.
3. Sine wave response, measured with input level $=0.5 \mathrm{~V}_{\mathrm{rms}}$ on one channel, and ALC off. For carrier frequencies at or below 1.5 GHz , modulation frequency response within $\pm 150 \mathrm{MHz}$ of carrier may be limited by RF chain filtering.

I/0 adjustments	
$\mathrm{I} \& 0$ offsets	External inputs (600Ω): ± 5 Volts
	External inputs (50Ω): $\pm 50 \%$
	Internal baseband generator: $\pm 50 \%$
1/0 attenuation	0 to 40 dB
1/0 gain balance	$\pm 4 \mathrm{~dB}$
I/Q quadrature skew	$\pm 10^{\circ}$ range (typ)
Low pass filter	Selectable 40 MHz or through path
I/O baseband outputs	
Differential	I, T, Q, $\overline{0}$
Single ended	I, 0
Frequency range	DC to 40 MHz
Output voltage into 50Ω	$1.5 \mathrm{~V}_{\text {peak-to-peak }}($ typ)
DC offset adjustments	$\pm 3 \mathrm{~V}$
DC offset resolution	1 mV
Low pass filter	Selectable 40 MHz or through path

Wideband external differential I/Q inputs (Option 016)

	$\mathbf{2 5 0} \mathbf{~ k H z}$ to $\mathbf{3 . 2} \mathbf{~ G H z}$	$\mathbf{3 . 2} \mathbf{t o ~} \mathbf{4 4} \mathbf{~ G H z}$
Input		
Input (baseband) frequency range	DC to 130 MHz (nom)	DC to $1.0 \mathrm{GHz}^{2}$
Input impedance	50Ω (nom)	50Ω (nom)
Recommended input level	-1 dBm	0 dBm (nom)
Maximum input voltage	$\pm 1 \mathrm{VDC}$	$\pm 1 \mathrm{VDC}$
I/Q offset adjustments	$\pm 50 \%$	$\pm 50 \%$
I/Q quadrature skew	± 10 degrees	± 10 degrees (nom)

$\overline{\mathrm{I}} \mathbf{0}$ frequency response for frequencies $<\mathbf{3 . 2} \mathbf{~ G H z}$ (measured) ${ }^{3}$

1. With Option 007, vector IO modulation is not useable in ramp sweep mode
2. Modulation frequency response within $\pm 1 \mathrm{GHz}$ of the carrier frequency may be limited by the RF chain cutoff frequencies.
3. Sine wave response, measured with input level $=0.2 \mathrm{~V}_{\text {rms }}$ on one channel, and ALC off. For carrier frequencies at or below 1.5 GHz , modulation frequency response within $\pm 150 \mathrm{MHz}$ of carrier may be limited by RF chain filtering.
$\overline{\text { I/O }}$ frequency response for frequencies $\mathbf{>} \mathbf{~ 3 . 2 ~ G H z ~ (m e a s u r e d) ~}{ }^{1}$

Internal baseband generator, arbitrary waveform mode (Option 602)

RF path filters ${ }^{2}$	
Carrier frequency N	Nominal filter cutoff frequencies
> 3.2 to 5 GHz 5.5	5.5 GHz low-pass filter
>5 to 8 GHz	8.9 GHz low-pass filter
>8 to 12.8 GHz	13.9 GHz low-pass filter
>12.8 to 20 GHz	22.5 GHz low-pass filter
>20 to 24 GHz	19.6 to 24.5 GHz band-pass filter
>24 to 28.5 GHz	23.5 to 29.0 GHz band-pass filter
>28.5 to 32 GHz	28.0 to 32.5 GHz band-pass filter
>32 to 36 GHz	31.7 to 36.5 GHz band-pass filter
>36 to 40 GHz	35.5 to 40.4 GHz band-pass filter
>40 to 44 GHz	39.5 to 44.3 GHz band-pass filter
Channels	2 [I and 0]
Resolution	16 bits [1/65,536]
Baseband waveform memory	
Length (playback)	64 megasamples (MSa /channel)
Length (non-volatile storage)	1.2 gigasamples (GSa) on 8 GB removable flash memory (Option 009)
Waveform segments	
Segment length	60 samples to 8 or 64 MSa
Maximum number of segments	s 8,192
Minimum memory allocation	256 samples or 1 kbyte blocks
Waveform sequences	
Sequencing	Continuously repeating
Maximum number of sequences	es 16,384
Maximum segments/sequence	e 32,768
Maximum segment repetitions	S 65,536

[^9]| Clock | |
| :---: | :---: |
| Sample rate | 1 Hz to 100 MHz |
| Resolution | 0.001 Hz |
| Accuracy | Same as timebase $+2^{-42}$ [in non-integer applications] |
| Reconstruction filter: [fixed] | 50 MHz [used for all symbol rates] |
| Baseband spectral purity [full scale sine wave] | |
| Harmonic distortion | 100 kHz to 2 MHz : <-65 dBc (typ) |
| Phase noise | $<-127 \mathrm{dBc} / \mathrm{Hz}$ (typ) (baseband output of 10 MHz sine wave at 20 kHz offset) |
| IM performance | $<-74 \mathrm{~dB}$ (typ) |
| Triggers | |
| Types | Continuous, single, gated, segment advance |
| Source | Trigger key, external, remote [LAN, GPIB, RS-232] |
| External polarity | Negative, positive |
| External delay time | 10 ns to 40 s plus latency |
| External delay resolution | 10 ns |
| Markers | |
| (Markers are defined in a segment during the waveform generation process, or from the | |
| PSG front panel; a marker can also be tied to the RF blanking feature of the PSG) | |
| Marker polarity | Negative, positive |
| Number of markers | 4 |
| Multicarrier | |
| Number of carriers | Up to 100 (limited by a maximum bandwidth of 80 MHz depending on symbol rate and modulation type) |
| Frequency offset (per carrier) | -40 MHz to +40 MHz |
| Power offset (per carrier) | 0 dB to -40 dB |
| Modulation | Types |
| PSK | BPSK, QPSK, OOPSK, п/4 DQPSK, 8PSK, 16PSK, D8PSK |
| QAM | 4, 16, 32, 64, 128, 256 |
| FSK | Selectable: 2, 4, 8, 16 |
| MSK | |
| Data | Random only |
| Multicarrier (measured) | |
| | Four carriers with 64 OAM at $10 \mathrm{Msym} / \mathrm{s}$ with 20 MHz spacing |

Multitone

Number of tones
Frequency spacing
2 to 64 , with selectable on/off state per tone

Phase (per tone) 100 Hz to 80 MHz

Power offset (per tone)
Fixed or random
0 to -40 dB

20 GHz multitone (measured)

44 GHz multitone (measured)

20 GHz image rejection (measured)

44 GHz image rejection (measured)

Two-tone
Frequency spacing
Alignment
IM distortion ${ }^{1}$
250 kHz to 3.2 GHz
$>3.2 \mathrm{GHz}$ to 20 GHz
>20 to 40 GHz
>40 to 44 GHz

20 GHz two-tone (measured)

100 Hz to 80 MHz
Left, centered, or right
$<-45 \mathrm{dBc}$ (typ)
$<-55 \mathrm{dBc}$ (typ)
$<-50 \mathrm{dBc}$ (typ)
$<-45 \mathrm{dBc}$ (typ)

44 GHz two-tone (measured)

1. RF power $\leq-1 \mathrm{dBm}$ (Option 520) or $\leq-3 \mathrm{dBm}$ (Option 532,544). When external inputs are used, vector accuracy is equivalent to internal performance after system calibration.

Internal baseband generator, real-time mode (Option 602)

EVM (measured)

FIR filter	
Selectable	Nyquist, root Nyquist, Gaussian, rectangular a: 0 to $1, B_{b}$ T: 0.1 to 1
Custom FIR	16 -bit resolution, up to 64 symbols long, automatically resampled to 1024 coefficients (maximum) >32 to 64 symbol filter: symbol rate $\leq 12.5 \mathrm{MHz}$ >16 to 32 symbol filter: symbol rate $\leq 25 \mathrm{MHz}$ Internal filters switch to 16 tap when symbol rate is between 25 and 50 MHz
Symbol rate	
For external serial data:	Adjustable from 1000 symbols/sec to a maximum symbol rate of $50 \mathrm{Mbits} / \mathrm{sec} \div$ (\#bits/symbol)
For internally generated data:	Adjustable from 1000 symbols/sec to 50 Msymbols/second and a maximum of 8 bits per symbol; modulation quality may be degraded at high symbol rates

[^10]| Baseband reference frequency Input | Data clock can be phase locked to an external reference. ECL, CMOS, TTL compatible, 50Ω AC coupled |
| :---: | :---: |
| Frame trigger delay control | |
| Range | 0 to 1,048,575 bits |
| Resolution | 1 bit |
| Data types | |
| Internally generated data | |
| Pseudo-random patterns | PN9, PN11, PN15, PN20, PN23 |
| Repeating sequence | Any 4-bit sequence |
| | Other fixed patterns |
| Direct-pattern RAM [PRAM] | |
| Max size | 64 Mb (each bit uses an entire sample space) |
| Use | Non-standard framing |
| User file | |
| Max size | 6.4 Mb |
| Use | Continuous modulation or internally generated TDMA standard |
| Externally generated data | |
| Type | Serial data |
| Inputs | Data, data (bit) clock, symbol sync |
| | Accepts data rates $\pm 5 \%$ of specified data rate |
| Internal burst shape control | |
| Varies with standards and bit rates | |
| Rise/fall time range | Up to 30 bits |
| Rise/fall delay range | 0 to 63.5 bits |
| Spectral re-growth (measured) | |

10 GHz carrier with 16 OAM signal at $\mathbf{1 0} \mathbf{~ M s y m} / \mathrm{s}$

25 GHz carrier with 16 OAM signal at $10 \mathrm{Msym} / \mathrm{s}$

Interfaces	GPIB (IEEE-488.2,1987) with listen and talk, RS-232, and 10BaseT LAN interface
Control languages	SCPI version 1997.0; completely code compatible with previous PSG signal generator models: - E8241A - E8244A - E8251A - E8254A - E8247C - E8257C The E8267D will emulate the applicable commands for the following HP/Agilent signal generators, providing general compatibility with ATE systems: - 8340-Series (8340/41B) - 8360-Series (836xxB/L) - 83700-Series (837xxB) - 8662A/8663A - 8643A/8644B
IEEE-488 functions	SH1, AH1, T6, TE0, L4, LE0, SR1, RL1, PP0, DC1, DT0, C0, E2
ISO compliant	This family of signal generators is manufactured in an ISO-9001 registered facility in concurrence with Agilent Technologies' commitment to quality
$\overline{\text { Agilent IO libraries }}$	Agilent's IO Libraries Suite ships with the E8267D to help you quickly establish an error-free connection between your PC and instruments-regardless of the vendor; it provides robust instrument control and works with the software development environment you choose

General specifications

Power requirements	100/120 VAC $50 / 60 / 400 \mathrm{~Hz}$; or 220/240 VAC $50 / 60 \mathrm{~Hz}$, (automatically selected); < 400 W typ, 650 W maximum
Operating temperature range	0 to $55^{\circ} \mathrm{C}$
Storage temperature range ${ }^{1}$	-40 to $70{ }^{\circ} \mathrm{C}$
Altitude	0 to $4600 \mathrm{~m}(15,000 \mathrm{ft})$
Humidity	Relative humidity - type tested at $95 \%,+40^{\circ} \mathrm{C}$ (non-condensing)
Environmental Testing	Samples of this product have been type tested in accordance with the Agilent Environmental Test Manual and verified to be robust against the environmental stresses of storage, transportation and end-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power line conditions; test methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3^{2}
EMC	Conforms to the immunity and emission requirements of IEC/EN 61326-1 including the conducted and radiated emission requirements of CISPR Pub 11/2003 Group 1 Class A
Acoustic noise	Normal: 53 dBA (nom)
	Worst case: $62 \mathrm{dBA}(\mathrm{nom})^{3}$
Storage	Memory is shared by instrument states, user data files, sweep list files, and waveform sequences There is 14 MB of flash memory available in the E8267D PSG With Option 009, there is an additional 8 GB of storage Depending on how the memory is utilized, a maximum of 1000 instrument states can be saved
Security	Display blanking Memory clearing functions (see application note "Security Features of Agilent Technologies Signal Generators," Part Number E4400-90621) With Option 009, all user-written files are stored on an 8 GByte removable flash memory card
Compatibility	Agilent 83550 Series millimeter heads and OML millimeter source modules Agilent 8757D scalar network analyzers Agilent EPM Series power meters
Self-test	Internal diagnostic routine tests most modules (including microcircuits) in a preset condition; for each module, if its node voltages are within acceptable limits, then the module "passes" the test
Weight	$<25 \mathrm{~kg}$ (54 lb.) net, < 33 kg (74 lb.) shipping
Dimensions	$\begin{aligned} & 178 \mathrm{~mm} \mathrm{H} \times 426 \mathrm{~mm} \text { W } \times 515 \mathrm{~mm} \text { D } \\ & \left(7^{\prime \prime} \mathrm{H} \times 16.8^{\prime \prime} \mathrm{W} \times 20.3^{\prime \prime} \mathrm{D}\right) \\ & \hline \end{aligned}$
Recommended calibration cycle	24 months

[^11]
Input/Output Descriptions

Front panel connectors
(All connectors are BNC female unless
otherwise noted)

RF output	Output impedance 50Ω (nom)
Option 520	Precision APC- 3.5 male or precision type-N female with Option 1ED
Options 532 and 544	Precision 2.4 mm male; plus $2.4(\mathrm{f})-2.4(\mathrm{f}) \mathrm{mm}$ and 2.4(f) - 2.9(f) mm adaptors
$\overline{\text { ALC input }}$	Used for negative external detector leveling Nominal input impedance $120 \mathrm{k} \Omega$, damage level $\pm 15 \mathrm{~V}$
LF output	Outputs the internally generated LF source; nominal output impedance 50Ω
External input 1	Drives either AM, FM, or $\Phi \mathrm{M}$; nominal input impedance 50 or 600Ω, damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$
External input 2	Drives either AM, FM, or ФM; nominal input impedance 50 or 600Ω, damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$
Pulse/trigger gate input	Accepts input signal for external fast pulse modulation Also accepts external trigger pulse input for internal pulse modulation; nominal impedance 50Ω Damage levels are $5 \mathrm{~V}_{\text {rms }}$ and $10 \mathrm{~V}_{\text {peak }}$
Pulse video out	Outputs a signal that follows the RF output in all pulse modes; TTL-level compatible, nominal source impedance 50Ω
Pulse sync out	Outputs a synchronizing pulse, nominally 50 ns width, during internal and triggered pulse modulation; TTL-level compatible, nominal source impedance 50Ω
Data clock input	Accepts a data clock signal to synchronize serial data for use with internal baseband generator (Option 602) Maximum rate 50 MHz Damage levels are $>+5.5 \mathrm{~V}$ and $<-0.5 \mathrm{~V}$
Data input	Accepts serial data for use with internal baseband generator (Option 602); maximum rate $50 \mathrm{Mb} / \mathrm{s}$; data must be valid on the falling edges of data clock (normal mode) or the symbol sync (symbol mode); damage levels are $>+5.5 \mathrm{~V}$ and $<-0.5 \mathrm{~V}$
I input	Accepts an "I" input either for I/Q modulation or for wideband $A M$; nominal input impedance 50 or 600Ω Damage levels are $1 \mathrm{~V}_{\text {rms }}$ and $5 \mathrm{~V}_{\text {peak. }}$.
0 input	Accepts a " Q " input for I/Q modulation; nominal input impedance 50 or 600Ω. Damage levels are $1 \mathrm{~V}_{\text {rms }}$ and $5 \mathrm{~V}_{\text {peak }}$
Symbol sync input	Accepts symbol sync signal for use with internal baseband generator (Option 602); symbol sync might occur once per symbol or be a single, one bit wide pulse to synchronize the first bit of the first symbol; maximum rate 50 MHz ; damage levels are $>+5.5 \mathrm{~V}$ and $<-0.5 \mathrm{~V}$

[^12]
Rear panel connectors

(All connectors are BNC female unless otherwise noted.) ${ }^{1}$

Auxiliary interface (Dual mode)	Used for RS-232 serial communication and for master/slave source synchronization (9-pin D-subminiature female connector) For master/slave operation, use Agilent part number 8120-8806 master/slave interface cable
GPIB	Allows communication with compatible devices
LAN	Allows 10 Base-T LAN communication
10 MHz input	Accepts a 10 MHz external reference (timebase) input; nominal input impedance 50Ω. Damage levels $>+10 \mathrm{dBm}$
10 MHz output	Outputs internal or external reference signal; nominal output impedance 50Ω. Nominal output power +10 dBm
Sweep output (dual mode)	Supplies a voltage proportional to the RF power or frequency sweep ranging from 0 volts at the start of sweep to +10 volts (nom) at the end of sweep, regardless of sweep width During CW operation, supplies a voltage proportional to the output frequency, +10 volts (nom) corresponding to the maximum specified frequency When connected to an Agilent 8757D scalar network analyzer (Option 007), generates a selectable number of equally spaced 1μ s pulses (nom) across a ramp (analog) sweep; number of pulses can be set from 101 to 1601 by remote control from the 8757D Output impedance: < 1Ω (nom), can drive 2000Ω
Stop sweep in/out	Open-collector, TTL-compatible input/output; in ramp sweep operation, provides low level (nominally 0 V) during sweep retrace and bandcross intervals, and high level during the forward portion of the sweep; sweep will stop when grounded externally; sweep will resume when allowed to go high
Trigger output (dual mode)	Outputs a TTL signal; high at start of dwell, or when waiting for point trigger; low when dwell is over or point trigger is received; in ramp sweep mode, provides 1601 equally-spaced $1 \mu \mathrm{~s}$ pulses (nom) across a ramp sweep; when using LF out, provides 2μ sulse at start of LF sweep
Trigger input	Accepts 3.3 V CMOS signal for triggering point-to-point in manual sweep mode, or to trigger start of LF sweep; damage levels $\geq+10 \mathrm{~V}$ or $\leq-4 \mathrm{~V}$
Source module interface	For Agilent 83550 Series mm source modules: provides bias, flatness correction, and leveling connections For OML SxxMS-AG mm source modules: provides power to the module and returns frequency multiplication information from the module
Source settled	Provides an output trigger that indicates when the signal generator has settled to a new frequency or power level; high indicates source not settled, low indicates source settled
Z-axis blank/markers	During ramp sweep, supplies +5 V (nom) level during retrace and bandswitch intervals; supplies -5 V (nom) level when the RF frequency is at a marker frequency
10 MHz EFC	(Option UNX or UNY) Accepts an external DC voltage, ranging from -5 V to +5 V , for electronic frequency control (EFC) of the internal 10 MHz reference oscillator; this voltage inversely tunes the oscillator about its center frequency approximately $-0.07 \mathrm{ppm} / \mathrm{V}$; the nominal input impedance is greater than $1 \mathrm{M} \Omega$
. 25 - 3.2 GHz coherent carrier output	Outputs RF signal modulated with FM or $\Phi \mathrm{M}$ but not I / Q, AM or pulse; nominal power 0 dBm ; frequency range from 250 MHz to 3.2 GHz ; not useful for output frequency > 3.2 GHz ; damage levels $20 \mathrm{~V}_{\mathrm{DC}}$ and 13 dBm reverse RF power; (SMA female)

[^13]| | Baseband generator clock input | Accepts a sine or square wave PECL clock input with a frequency range of 200 to 400 MHz (resulting in sample rates of $50 \mathrm{MSa} / \mathrm{s}$ to $100 \mathrm{MSa} / \mathrm{s}$); the recommended input level is approximately $1 \mathrm{~V}_{\text {pe }}$ \qquad for a square wave and 0 dBm to 6 dBm for a sine wave; allows the baseband generators of multiple signal sources to run off same clock |
| :---: | :---: | :---: |
| | Burst gate input | Accepts signal for gating burst power for use with internal baseband generator (Option 602); the burst gating is used for externally supplying data and clock information; the input signal must be synchronized with the external data input that will be output during the burst; the burst power envelope and modulated data are internally delayed and re-synchronized; the input signal must be CMOS high for normal burst RF power or CW RF output power and CMOS low for RF off; damage levels are $>+5.5 \mathrm{~V}$ and $<-0.5 \mathrm{~V}$ |
| | Event 1 output | In real-time mode, outputs a pattern or frame synchronization pulse for triggering or gating external equipment, for use with internal baseband generator (Option 602); may be set to start at the beginning of a pattern, frame, or timeslot and is adjustable to within \pm one timeslot with one bit resolution; in arbitrary waveform mode, outputs a timing signal generated by marker 1 |
| | Event 2 output | In real-time mode, outputs a data enable signal for gating external equipment, for use with internal baseband generator (Option 602); applicable when external data is clocked into internally generated timeslots; data is enabled when signal is low; in arbitrary waveform mode, outputs a timing signal generated by marker 2 |
| | I and $\mathbf{0}$ outputs | Outputs the analog I/Q modulation signals from the internal baseband generator; nominal output impedance 50Ω, DC-coupled; damage levels $\pm 3.5 \mathrm{~V}$ |
| | $\overline{\bar{I}}$ and $\overline{\mathrm{O}}$ outputs | Outputs the complement of the I and 0 signals for differential applications; nominal output impedance 50Ω, DC-coupled; damage levels $\pm 3.5 \mathrm{~V}$ |
| | Pattern trigger input | Accepts signal to trigger internal pattern or frame generator to start single pattern output, for use with internal baseband generator (Option 602); minimum pulse width 100 ns; damage levels are $>+5.5 \mathrm{~V}$ and $<-0.5 \mathrm{~V}$ |
| | Wideband I and 0 inputs | Direct differential high-bandwidth analog inputs to $\mathrm{I} / 0$ modulator in 3.2 to 44 GHz range and useable for carriers <3.2 GHz; not calibrated; 0 dBm maximum;
 (Option 016 only) |
| | Removable flash memory drive | Accepts 8 GB compact flash memory card for optional non-volatile memory (Option 009 only); all user information (save/recall settings, flatness files, presets, etc.) is stored on removable memory card when Option 009 is installed |
| Auxiliary I/O connector (37-pin) used with Option 602 | Alternate power input | Accepts CMOS signal for synchronization of external data and alternate power signal timing; damage levels are $>+8 \mathrm{~V}$ and $<-4 \mathrm{~V}$ |
| | Data clock output Data output | Relays a CMOS bit clock signal for synchronizing serial data; outputs data from the internal data generator or the externally supplied signal at data input; CMOS signal |
| | Event 3 output | In arbitrary waveform mode, outputs a timing signal generated by marker 3 ; damage levels $>+8 \mathrm{~V}$ and $<4 \mathrm{~V}$ |
| | Event 4 output | In arbitrary waveform mode, outputs a timing signal generated by marker 4 ; damage levels $>+8 \mathrm{~V}$ and $<4 \mathrm{~V}$ |
| | Symbol sync output | Outputs CMOS symbol clock for symbol synchronization, one data clock period wide |

Model/option	Description
E8267D-520	Frequency range from 250 kHz to 20 GHz
E8267D-532	Frequency range from 250 kHz to 31.8 GHz
E8267D-544	Frequency range from 250 kHz to 44 GHz
E8267D-602	Internal baseband generator, 64 MSa memory
E8267D-003	PSG digital output connectivity with N5102A
E8267D-004	PSG digital input connectivity with N5102A
E8267D-007	Analog ramp sweep
E8267D-009	8 GB removable flash memory
E8267D-016	Wideband external I/Q inputs
E8267D-403	Calibrated AWGN
E8267D-409	Global positioning system (GPS) personality
E8267D-422	Scenario generator for GPS personality
E8267D-UNX	Ultra-low phase noise
E8267D-UNY	Enhanced ultra-low phase noise
E8267D-UNT	AM, FM, phase modulation, and LF output
E8267D-UNU	Pulse modulation
E8267D-UNW	Narrow pulse modulation
E8267D-1ED	Type-N (f) RF output connector
E8267D-1EH	Improved harmonics below 2 GHz
E8267D-1EM	Moves all front panel connectors to the rear panel
E8267D-1CN	Front handle kit
E8267D-1CM	Rackmount flange kit
E8267D-1CP	Rackmount flange and front handle kit
E8267D-UK6	Commercial calibration certificate and test data
E8267D-CD1	CD-ROM containing the English documentation set
E8267D-ABA	Printed copy of the English documentation set
E8267D-0BW	Printed copy of the assembly-level service guide
E8267D-SP2	Dynamic sequencing capability
Application Software	
E8267D-SP1	Signal Studio for jitter injection
N7600B	Signal Studio for 3GPP W-CDMA FDD
N7601B	Signal Studio for 3GPP2 CDMA
N7602B	Signal Studio for GSM/Edge
N7606A	Signal Studio for Bluetooth ${ }^{\circledR}$
N7613A	Signal Studio for 802.16-2004 Fixed WiMax ${ }^{\text {TM }}$
N7615B	Signal Studio for 802.16 OFDMA Mobile WiMax
N7617B	Signal Studio for 802.11 WLAN
N7619A	Signal Studio for multiband OFDM UWB
N7620A	Signal Studio for pulse building
N7621B	Signal Studio for multitone distortion testing
N7622A	Signal Studio Toolkit
N7623B	Signal Studio for digital video
N6171A	MATLAB software
Special Options	
E8267D-H1S	1 GHz external frequency reference input
E8267D-H1G	Connections for phase coherency and improved phase stability < 250 MHz
E8267D-HCC	Connections for phase coherency $>250 \mathrm{MHz}^{1}$
E8267D-H18	Wideband modulation below 3.2 GHz
Accessories	
U3035P	Distribution network (lock box) ${ }^{1}$
1819-0427	8 GByte compact flash memory card
8120-8806	Master/slave interface cable
N5102A	Digital signal interface module
N5101A	Baseband Studio PCI card

[^14]
Web Resources

For additional product information, visit:
www.agilent.com/find/psg
For information about renting,leasing or financing Agilent's latest technology, visit: www.agilent.com/find/buyalternatives

For accessory information, visit:
www.agilent.com/find/accessories
For additional description of Agilent's IO Libraries Suite features and installation requirements, please go to:
www.agilent.com/find/iosuite/database
Agilent PSG Microwave Signal Generators
Brochure, Literature number 5989-1324EN
E8267D PSG Vector Signal Generator
Configuration Guide, Literature number 5989-1326EN
E8257D PSG Analog Signal Generator
Data Sheet, Literature number 5989-0698EN
Configuration Guide, Literature number 5989-1325EN
E8663D PSG RF Analog Signal Generator
Data Sheet, Literature number 5990-4136EN
Configuration Guide, Literature number 5990-4137EN
PSG Two-tone and Multitone Personalities
Application Note AN 1410, Literature number 5988-7689EN
Signal Studio for Pulse Building
Technical Overview, http://wireless.agilent.com/wireless/helpfiles/n7620a/n7620a.htm
Signal Studio for Multitone Distortion
Technical Overview, http://wireless.agilent.com/wireless/helpfiles/n7621/n7621.htm
Agilent I/O Modulation Considerations for PSG Vector Signal Generators
Application Note, Literature number 5989-7057EN
Baseband Studio Digital Signal Interface Module
Technical Overview, Literature number 5988-9495EN
Security Features of Agilent Technologies Signal Generators
Part Number E4400-90621

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

LXI

www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners Get the best of both worlds: Agilent's measurement expertise and product breadth, combined with channel partner convenience.

WiMAX ${ }^{\text {TM }}$ is a trademark of the WiMAX Forum ${ }^{\circledR}$
Bluetooth and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc, U.S.A. and licensed to Agilent Technologies, Inc.

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus
Americas

Canada	$(877) 8944414$
Brazil	$(11) 41973500$
Latin America	3052697500
Mexico	018005064800
United States	$(800) 8294444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Thailand	1800226008

Europe \& Middle East

Austria	43 (0) 13602771571
Belgium	32 (0) 24049340
Denmark	4570131515
Finland	358 (0) 108552100
France	0825010 700*
	*0.125 €/minute
Germany	49 (0) 70314646333
Ireland	1890924204
Israel	972-3-9288-504/544
Italy	390292608484
Netherlands	31 (0) 205472111
Spain	34 (91) 6313300
Sweden	0200-88 2255
Switzerland	0800805353
United Kingdom	44 (0) 1189276201
Other European Countries:	
www.agilent.com/find/contactus	
Revised: July 8,2010	

Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2011
Printed in USA, February 21, 2011
5989-0697EN

[^0]: 1. Operational, but unspecified, down to 100 kHz .
 2. In ramp sweep mode (Option 007), resolution is limited with narrow spans and slow sweep speeds. Refer to ramp sweep specifications for more information.
 3. Time from GPIB trigger to frequency within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz .
 4. Add 12 ms (typ) when switching from greater than 3.2 GHz to less than 3.2 GHz .
 5. With Option 1EH low band harmonic filters off. With the 1EH filters turned on, add 4 ms .
 6. N is a factor used to help define certain specifications within the document.
 7. To optimize phase noise use $5 \mathrm{dBm} \pm 2 \mathrm{~dB}$.
 8. 19 ms (typ) when stepping from greater than 3.2 GHz to less than 3.2 GHz .
 9. Not verified by Agilent N7800A TME Calibration and Adjustment Software. Daily aging rate may be verified as a supplementary chargeable service, on request.
[^1]: 1. During ramp sweep operation, AM, FM, phase modulation, and pulse modulation are useable but performance is not specified; wideband AM and I / Q modulation are not useable.
 2. Minimum settable sweep span is proportional to carrier frequency and sweep time. Actual sweep span may be slightly different than desired setting for spans less than [0.00004% of carrier frequency or 140 Hz] \times [sweep time in seconds]. Actual span will always be displayed correctly.
 3. Typical accuracy for sweep times > 100 ms can be calculated from the equation: $[(0.005 \%$ of span)/(sweep time in seconds)] timebase. Accuracy is not specified for sweep times < 100 ms .
 4. For master/slave operation, use Agilent part number 8120-8806 master/slave interface cable.
 5. GPIB system interface is not supported with $8757 \mathrm{~A} / \mathrm{C} / \mathrm{E}$, only with 8757 D . As a result, some features of the $8757 \mathrm{~A} / \mathrm{C} / \mathrm{E}$, such as frequency display, pass-through mode, and alternate sweep, do not function with PSG signal generators.
[^2]: 1. Maximum power specifications are warranted from 15 to $35^{\circ} \mathrm{C}$, and are typical from 0 to $15^{\circ} \mathrm{C}$. Maximum power over the 35 to $55^{\circ} \mathrm{C}$ range typically degrades less than 2 dB unless otherwise stated.
 2. With I / Q modulation on, maximum power specification is typical. With external inputs enabled, $\sqrt{\left(1^{2}+Q^{2}\right)}>0.2 \mathrm{~V}_{\text {rms }}$.
 3. With harmonic filters switched off. With filters on, maximum output power is reduced 3 dB for frequencies below 2 GHz .
 4. With I / Q modulation on, maximum power specification is typically reduced 3 dB .
 5. Maximum power over the 35 to $55^{\circ} \mathrm{C}$ range typically degrades less than 4 dB . With $\mathrm{I} / 0$ modulation on, maximum power specification is typically reduced 5 dB .
 6. Maximum power specifications are warranted from 15 to $35^{\circ} \mathrm{C}$. From 0 to $15^{\circ} \mathrm{C}$, the performance is typically the same as the warranted specification. From 35 to $55^{\circ} \mathrm{C}$, the performance is typically 2 dB less than the warranted specification.
 7. With Option 1EH low-pass filters below 2 GHz switched off, unless otherwise specified. Specifications above 2 GHz apply with filters on or off.
 8. Applies when using the standard I / Q inputs or the internal baseband generator (0 ption 602) and $\sqrt{\left(I^{2}+0^{2}\right) \geq 0.5 \mathrm{Vrms} \text {. }}$
 9. Applies when using the wideband external differential I / Q inputs (Option 016) and $\sqrt{\left(1^{2}+Q^{2}\right)} \geq 0.2$ Vrms.
[^3]: 1. Specifications apply in CW and list/step sweep modes over the 15 to $35^{\circ} \mathrm{C}$ temperature range, with attenuator hold off (normal operating mode). Degradation outside this range, for ALC power levels > -5 dBm and frequency $>10 \mathrm{MHz}$, is typically $<0.3 \mathrm{~dB}$. In ramp sweep mode (with Option 007), specifications are typical. For instruments with type-N connectors (Option 1ED), specifications apply only up to 18 GHz and typical level accuracy degrades by 0.2 dB above 18 GHz .
 Specifications do not apply above the maximum specified power.
 2. Measured with symbol rate $>10 \mathrm{kHz}$ and power $\leq 0 \mathrm{dBm}$.
 3. Relative to ALC on, after power search is executed. When applying external I / Q signals with ALC off, output level will vary directly with I / Q input level.
 4. Options 532 and $544: 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ (typ) above 2 GHz .
 5. Compatible with Agilent EPM Series (E4418B and E4419B) power meters.
[^4]: 1. Specifications are typical for harmonics beyond specified frequency range.
 2. Specifications are with Option 1EH low-pass filters below 2 GHz off, unless noted.
 3. Typical below 250 MHz if Option 1EH is installed and the filters are off.
 4. In ramp sweep mode (Option 007), harmonics are -30 dBc below 250 MHz .
 5. Specifications are typical for harmonics beyond specified frequency. Specifications are with Option 1EH low-pass filters below 2 GHz off, unless noted.
 6. Below 250 MHz in ramp sweep mode (Option 007), Option 1EH filters are always off. Refer to harmonic specification with filters off.
[^5]: 1. Phase noise specifications are warranted from 15 to $35^{\circ} \mathrm{C}$. Excluding external mechanical vibration. Option UNY specifications at 1 kHz offset apply from 25 to $35^{\circ} \mathrm{C}$.
 2. Measured at +10 dBm or maximum specified power, whichever is less.
[^6]: 1. Through any combination of path1, path2, or path1 + path2.
[^7]: 1. Through any combination of path1, path2, or path1 + path2.
 2. Specifications apply in CW and list/step sweep modes. During ramp sweep operation (Option 007), 3 dB bandwidth is typically 50 kHz to 1 MHz (high BW mode).
 3. Path 1 is useable to 4 MHz for external inputs less than $0.3 \mathrm{~V}_{\text {peak }}$.
[^8]: 1. With ALC off, specifications apply after the execution of power search. Specifications apply with Atten Hold Off (default mode), or ALC level between -5 and +10 dBm or maximum specified power, whichever is lower.
 2. Power search is a calibration routine that improves level accuracy with ALC off. The instrument microprocessor momentarily closes the ALC loop to find the modulator drive setting necessary to make the quiescent RF level equal to an entered value, then opens the ALC loop while maintaining that modulator drive setting. When executing power search, RF power will be present for typically $10-50 \mathrm{~ms}$; the step attenuator can be set to automatically switch to maximum attenuation to protect sensitive devices. Power search can be configured to operate either automatically or manually at the carrier frequency, or over a user-definable frequency range. Power search may not operate above the maximum specified output power.
 3. With attenuator in 0 dB position. Video feed-through decreases with attenuator setting.
 4. With attenuator in 0 dB position. Video feed-through decreases with attenuator setting.
[^9]: 1. Sine wave response, measured with input level $=0.2 \mathrm{~V}_{\mathrm{rms}}$ on one channel, and ALC off. For carrier frequencies at or below 1.5 GHz , modulation frequency response within $\pm 150 \mathrm{MHz}$ of carrier may be limited by RF chain filtering.
 2. Modulation frequency response within $\pm 1 \mathrm{GHz}$ of the carrier frequency may be limited by the RF chain cutoff frequencies. For operation near a filter edge, filters can be bypassed using sofware commands to increase modulation bandwidth.
[^10]: 1. Valid after executing I/Q calibration and instrument is maintained within $\pm 5^{\circ} \mathrm{C}$ of calibration temperature. RF power $<5 \mathrm{dBm}$ (Option 520) or $<3 \mathrm{dBm}$ (Option 532,544). When external inputs are used, vector accuracy is equivalent to internal performance, after system calibration.
 2. Valid after executing I/Q calibration when instrument is maintained at the calibration temperature.
[^11]: 1. Storage below $-20^{\circ} \mathrm{C}$ instrument states may be lost.
 2. As is the case with all signal generation equipment, phase noise specifications are not warranted in a vibrating environment.
 3. This is louder than typical Agilent equipment: 60 dBA (nom).
[^12]: 1. Digital inputs and outputs are 3.3 V CMOS unless indicated otherwise. Inputs will accept $5 \mathrm{VCMOS}, 3 \mathrm{VCMOS}$ or TTL voltage levels.
[^13]: 1. Digital inputs and outputs are 3.3 V CMOS unless indicated otherwise. Inputs will accept 5 V CMOS, 3 V CMOS or TTL voltage levels.
[^14]: 1. Utilized for multiple source phase coherency applications
